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INTRODUCTION

Nonlinear pulse propagation experiments conducted at Los Alamos National

Laboratory are directed in part at determining nonlinear state relations for

elastic earth materials.1 In one of the experimental configurations, axial

compressional pulses are  driven in a two meter cylindrical rod by oscillating

a piezo-electric crystal at one end.  Frequencies are of the order of 10kHz and

pulse t imes of the order of a mill isecond. The spectrum of resulting

displacements is obtained from displacement measurements made prior to

the arrival of reflections from the undriven end.2 Most of the theory in

support of the program has modeled the stress-strain relation of samples

assuming ideal nonlinear elasticity. Efforts to explore the effects of dissipative

mechanisms and additional nonlinear contributions, (e.g., hysteresis and

discrete memory) are in progress. It is likely that non ideal effects will be

interpreted in terms of departures from those of the ideal theory. In view of

this, it is evident that a best possible understanding of propagation in the

ideal nonlinear elastic limit is important.

In this  paper,  a  representat ion of  the frequency spectrum for  these

experiments is derived which can be used to algebraically infer parameters of

assumed ideal elastic stress-strain relations from measured spectral data.

Al though other  methods  have  been suggested  in  support  o f  these

experiments3,  attempts to determine the state relation have depended

primarily on frequency domain analyses of nonlinear models which

incorporate state relations with free parameters. Values of these parameters

have been inferred by comparison of predicted spectral amplitudes using

perturbation methods with those generated in experiments.2,4,5  The most
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successful of these theories has been that of Van Den Abeele.5 Using

incremental damping corrections to undamped wave propagation similar to

those of an earlier study of noise propagation in fluids,6 very good agreement

with the mode structure seen in the experiment was obtained.

In this paper, propagating waveforms are calculated in the time domain by

modifying undamped simple wave propagation7 to include dissipation. The

spectral representation of these waves is obtained by Fourier transform.

Because the wave forms are calculated in the time domain the evolution of

the propagating pulses are easily visualized and interpreted as the results of

compressions and di lat ions.  Results  of  this  methodology include a

transparent interpretation of experiments and a more efficient and flexible

numerical capability for a wider variety of pulse profiles than is achievable

with other methods. The representation admits finite amplitude sources of

finite pulse length.

To facilitate comparison with other theories,  the representation is used in

this paper to analyze the spectrum of a single frequency CW source assuming

a cubic approximation to the stress-strain relation. The values of the first

nonlinear coefficient found here are at the upper end of the range of values

found by Van Den Abeele.5 The values of the second nonlinear coefficient

found here are also contained in the range found by him, with differences in

upper and lower ranges differing by factors of two or less. Some general

properties of propagation are illustrated numerically. A more detailed

examination will appear in a separate paper.8
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The nondissipative model is discussed in the next section, and the exact

spectral representation for undamped wave propagation is derived in Sec. II

and il lustrated for a monotonal pulse in the small  amplitude source

approximation. In Sec. III, expressions are derived for coefficients of cubic

approximations to stress-strain relations assuming weak nonlinearity in

terms of spectral amplitudes. The spectral representation is corrected to

include dissipation in Sec. IV, and state parameters  (e.g., β and δ )  are inferred

from experimental data and compared to those obtained by Meegan, et al, and

Van Den Abeele.  Some properties of  damped wave propagation are

illustrated numerically in Sec.V. We conclude with a discussion of results.

I.  THE NONDISSIPATIVE MODEL

The  s imples t  one  d imens ional  model  for  s tudying  nondiss ipat ive

compressional wave propagation from a pulsed source in an elastic medium

is the first order 2x2 system consisting of the equations of continuity and force

balance for the mass density per unit length, ρ(x,t), and displacement velocity,

v(x,t). (The laboratory position coordinate is x, and time is t.)  Analysis of the

dynamics predicted by this model is facilitated by using Lagrangian

coordinates (i.e.; coordinates fixed in the material.) An element undergoing

displacements carries its Lagrangian coordinate, z, with it for all time. (The

laboratory coordinate, x, of an element at time t = T is a function of its initial

position, or Lagrangian coordinate, z;  x = x(z,T). The displacement velocity is

the partial derivative of x with respect to T.) In terms of the Lagrangian

coordinate, the continuity and force balance equation are

                                               

εT - vz = 0

vT - 1
ρ*

σz = 0
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 ε ≡ - 1 - 

ρ*

ρ
 = 

∂ x-z

∂z                                                 (1)

(If a coordinate in the unstressed bar, z, is displaced to the position, x,

conservation of mass requires ρ∗dz= ρdx.) ρ* is the density in the absence of

stress. The elastic stress, σ, of the material is assumed to depend on space and

time only via strain, ε. Subscripts T or z indicate partial differentiation with

respect to the subscripted variable with the other held constant. (Familiar

second order wave equations for nonlinear compressional wave propagation

may be obtained from Eq.(1) by elimination of variables.) If σ is  a single

valued function of ε, plasticity and damping effects are not included in this

model. If the relation between stress and strain is one-to-one, as will be

assumed in this paper, the state relation may be written as either σ(ε) or ε(σ).

Both functions vanish when their arguments are zero and are will be taken to

be monotonically increasing functions of their arguments.

The system, Eq.(1), together with  the state relation, yields a hyperbolic system

of first order partial differential equations for the velocity, v, and stress, σ (or

strain parameter, ε ). The local characteristic paths (or signal "speeds") in (z,T)

space are given by [3]

                                           
dz
dT

 = ± σ'( ε)/ρ* ≡ ±c ε
                                                      (2)

where σ ' (ε ) = dσ/dε. The space time paths corresponding to +c and -c will be

referred to as forward and backward propagating information paths,

respectively.  (c(0) = c0 is the signal speed of linear wave propagation.)

5
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When analyzing wave dynamics initiated by a pulse at one end of a bar, z = 0,

initiated at T = 0, it is convenient to partition space-time into two regions.

The first region is the collection of space-time coordinates at which time is

sufficiently early that propagation at a position has not yet been affected by

signal reflection from the other end of the bar. The other is its complement.

Pulse propagation experiments at Los Alamos aimed at studying nonlinear

elastic properties of media analyze spectral properties of finite amplitude

signal propagation in the first region. These spectra are the subject of this

paper. It can be shown [3], [7] that for these experiments Eq.(1) predicts that in

the first region

      (i)   both v and ε are constant on each forward propagating path (dz/dt=+c).

(ii)  there is a functional relation between v and ε:

                                             
v = - c ε dε

0

ε

                                                                (3)

Equation (3) implies that in the first region, ε, and therefore σ, are functions

of v. Since ε  is constant on the forward propagating paths of this region, and

the signal speed depends only on ε, each path is a straight line. The first

region is ,  therefore,  a  "simple wave region."7 The  convergence  and

divergence of linear forward propagating paths in the simple wave region

distort the initial pulse form, thereby altering the spectrum of the stress,

strain and velocity pulses confined to this region.

6
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II.  SPECTRA IN THE SIMPLE WAVE REGION

If τ(z,T) is the time the forward propagating path in the simple wave region

passing through a point (z,T) enters the elastic material at z = 0 carrying

information about  displacements at z = 0,

                                              
τ(z,T) = T - z

c ε 0,τ                                                             (4)

If at z, a time dependent pulse, p(z,Τ), of the stress, strain or velocity is

confined to a time interval in the simple wave region, its frequency spectrum,

is given by its Fourier transform.

                    
p z,ω  ≡ 1

2π
 p z,T exp -iωT dT

pulse length

  

                          

= 1
iω 2π

 
∂p z,T

∂T
exp -iωT dT

pulse length

  

                          
= 1

iω 2π
dp 0,τ

dτ
exp -iω τ + z/c ε 0,τ dτ

initial pulse length

  

            (5)

Since the detector most often used in experiments is an accelerometer, p = v

will be employed.  Using Eq.(3), Eq.(5) becomes a Fourier transform of a

function of v

              

v z,ω  = 1
2π

exp -iω  z/c ε v
0

v 0 ,τ

dv exp -iω τdτ

initial pulse length

  

           (6)
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Equation (6) may be used to determine parameters of nonlinear state relations

from displacement spectra of weakly nonlinear pulses if the frequency

spectrum is provided empirically.

Assuming that the pulse is weakly nonlinear, so |v/c |<<1, the expansion of

the state relation is

                                        
σ ε  = ρ*c0

2 ε + 
β
2!

ε2 + δ
3!

ε3  + .....
                                        (7)

(The notation for the coefficients in series expansions of state relations has

not been standardized: the β/2! and δ/3! in this paper are the β  and δ  o f

Meegan, et al and the β/2 and δ/3 of Van Den Abeele. ) Using the expansion of

the state relation together with Eq.(3) yields an expansion for the strain in

terms of the velocity

                                          
- ε = v

c0
 + 

β
4

v
c0

2 - 1
12

δ - 2β2 v
c0

3 + ....

Substituting this expansion in the signal speed of the exponent of the velocity

transform results in an integral involving only the driving displacement

velocity pulse and parameters of the Taylor series expansion of the state

relation. The exponential can be expanded in a Taylor series in v/c. The result

is a Fourier transform of a sum of powers of the applied displacement

velocity pulse.

                   
v z,ω  ≡ c0

2π
exp -iω z

c0
exp -iω τE

v 0,τ
c0

dτ  

8
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E
v 0,τ

c0
 = 

v 0,τ
c0

1  - 1
2!

iωz
2c0

β v 0,τ
c0

+ 1
3!

iωz
2c0

β iωz
2c0

β  + 
δ - 2β2

β
v 0,τ

c0

2
 + .....  

                                                                                                        (8)

Equation (8) is the series expansion of the frequency spectrum in source

amplitude for weakly nonlinear sources. The expansion may be carried out to

any order, using as many terms as one desires in the expansion of the state

relation. For frequencies and lead parameters (e.g., β a n d  δ)  of the state

relation which leave the size of the exponential less than about 1/2 the first

few terms should provide a reasonably good approximation to the spectrum

for the prediction and interpretation of experimental data.

If the source is a predominantly multi-period, single frequency with angular

frequency, Ω, its velocity frequency spectrum may be approximated using  a

CW source

                                        v 0,τ  = µc0cosΩ τ - τ0

(µ > 0 is a Mach number for the source) of infinite pulse length. The resulting

frequency spectrum is  a  sum of  Dirac δ-functions centered at integer

multiples of Ω, (i.e., ω = ±nΩ, n = 0,1,2,3,..... ).(Amplitudes of the acceleration

spectrum are just |ω| times those of the velocity spectrum.) Up to and

including cubic terms in v/c, one finds that amplitudes of the acceleration

spectrum at z are given by

9
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Az,1Ω  = 2π Ωc0µ  1 - 

µ2

8
 Ωz
2c0

β
2 2

 + 
µ2

8
Ωz
2c0

β
δ - 2β2

β

2

        
 Az,2Ω  = 2π Ωc0µ µ Ωz

2c0
β

        
Az,3Ω  = 2π Ωc0µ

9µ2

8
Ωz
2c0

β Ωz
2c0

β
2
 + 

δ - 2β2

3β

2

                         (9)

Assuming a sign for the convexity of  the stress-strain relation,  β  is

determined by the acceleration amplitude at 2Ω. The restriction for the cubic

coefficient, δ , is then found either from the amplitude at 1Ω or 3Ω.

While the expression for A(z,2Ω) would be changed if the expansion were to

be extended to include fourth powers of v/c, the expressions for A(z,1Ω) and

A(z,3Ω)  would not be. Even powers of the sine function contribute to

amplitudes at even multiples of Ω, and odd powers contribute to amplitudes

odd multiples of Ω.

III.  COMPARISON OF SIMPLE WAVE THEORY AND EXPERIMENTAL DATA

Within the context of the model, the spectral representation given by Eq.(6) is

exact in the simple wave region. Consequently, the series expansion, Eq.(8),

yields the unique power series representation in source strength around zero

amplitude for undamped weakly nonlinear elastic pulses. Evidently, for any

finite amplitude source, if the frequencies employed or distances from the

source at which data are taken are sufficiently large, successive terms in the

series expansion will become comparable in magnitude, and the expressions

for  the  s tate  parameters  obtained using famil iar  "zero-ampli tude"

10
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perturbation methodology will be incorrect. The expansion remains valid, but

its utilization will be more difficult.

Data from pulse propagation experiments in a Berea sandstone bar2 is shown

in Figs. 1a and 1b.

Using the data sets and the expressions for A(z,2Ω) and A(z,3Ω)

                                                               
Ωz
2c0

β µ
2
 = << 1

                                    

δ - 2β2

β
µ

2

 = 9 8
9

A z,3Ω
A z,2Ω

2

 - Ωz
2c0

β µ
2

                  (10)

Substituting these values in the expression for A(z,1Ω), one concludes that

                                                   

Az,1Ω
Alinear 1Ω

 ≈ 1
                                  (11)

This is the small amplitude perturbation hypothesis is the absence of

damping. However, all data sets satisfy

                                                  

Az,1Ω
Alinear 1Ω

 < 1
2

 
                                             (12)

State relation parameters inferred from amplitudes of higher frequency

modes assuming nondissipative propagation are incompatible with

propagated spectral amplitudes measured at the source frequency.

11
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IV.  A DAMPING-CORRECTED SPECTRAL REPRESENTATION

In a recent analysis of pulse propagation experiments, Van Den Abeele5

employed equations without dissipation to numerically propagate nonlinear

waves with discrete spectra short incremental distances in a semi-infinite bar.

After each incremental step, the propagated spectral amplitudes were

modified assuming linear damping before being used as a source for

propagation through the next incremental distance. Nonlinear evolution of

the amplitudes was controlled by a small amplitude ordering assumption. In

effect, a simple wave, generated by a CW source, was propagated in each

interval, and the amplitudes of the propagated wave are corrected at the end

of the interval assuming a phenomenological linear exponential damping.

With this procedure it was found that β/2 ≈ 300-500 and δ/6 ≈ 2 108-109
.  The

range for β, is much lower than that of an earlier perturbation analysis,2

which found β/2 ≈ 0.5-1 104
,  while the lower end of the range for δ  is  in

agreement with the earlier suggested upper end of the range, δ = O β2

A modification of the representation of the frequency spectrum for simple

waves is now proposed in order to obtain a mathematically tractable one that

includes damping effects. To obtain the representation, a linear damping of

the simple wave velocity is first imposed on the simple wave signal speed

paths.

                                                   v(z,T) = v(0,τ)exp(-kz)                                              (13)

Maintaining the  s imple  wave re lat ion between veloci ty  and stra in

parameters, Eq. (3), and applying the damped velocity, Eq (13), to the

calculation of the signal speed path

12
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dT z,τ

dz
 = 1

c ε v 0,τ exp -kz

                                  
T z,τ  = τ + dz

c ε v 0,τ exp -kz
0

z

                            (14)

The value of the velocity is carried unchanged as a function of z to the new

signal speed path initiated at (0,τ).

With this procedure, damping changes the convergence and divergence of

paths in what was formerly a simple wave region. Except for the uniform

exponential damping of the amplitude, the assignment of velocity on each

path is unchanged. Consequently, except for the uniform damping, the

distribution of the spectral density is due solely to the change in the signal

speed paths. Since damping with distance from the source takes the velocity

to zero along each paths, the paths, if continued indefinitely would each

parallel that of a linearly propagating signal. (This is illustrated in the next

section.) However, these straight line paths, extrapolated linearly back to z = 0,

would generally not arrive there at the same times they entered the sample.

A weak amplitude signal with an approximately invariant frequency

spectrum (modulo exp(-kz)), different from that of the source, would

propagate in z.

Because this procedure changes the geometry of the information paths from

linear to curvilinear, the integrand of the Fourier transform no longer

separates the time dependence of the source velocity and z in a simple way.

13
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v z,ω  = e-kz

2π iω
∂v 0,τ

∂τ
exp -iω τ + dz/c ε v 0,τ e-kz

0

z

dτ

initial pulse length

  

         (15)

However, for weak nonlinearities, expansion of the state relation results in

integrals of powers exp(-kz) which are easily evaluated. The resulting

exponential may be expanded in a power series as in the simple wave case,

and delta-functions recovered for the single frequency source.

                                
v z,ω  = c0e-kz

2π
exp -iω z

c0
exp -iω τEd

v 0,τ
c0

dτ  

Ed
v 0,τ

c0
 = 

v 0,τ
c0

1  + 1
2!

iωz
2c0

βK
v 0,τ

c0
+ 1

3!
iωz
2c0

βK iωz
2c0

βK  + 
δ - 2β2

β
C

v 0,τ
c0

2
 + .....  

                                   
K ≡ 1 - e-kz

kz
;      C ≡ 1

2
1 - e-2kz

1 - e-kz
 = 1 + e-kz

2
  

                                 (16)

The coefficients K and C are approximately (1 – kz/2) and (1 + kz/2),

respectively, if 0 < kz << 1. For kz >> 1, their respective values  are 1/kz and

1/2.

Using the single frequency CW source approximation of Sec. III,

          
Ad z,1Ω  = 2π Ωc0µe-kz  1 - 

µ2

8
 Ωz
2c0

βK
2 2

 + 
µ2

8
Ωz
2c0

βK
δ - 2β2

β
C

2

                                
 Ad z,2Ω  = 2π Ωc0µe-kz µ Ωz

2c0
βK

14
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Ad z,3Ω  = 2π Ωc0µe-kz 9µ2

8
Ωz
2c0

βK Ωz
2c0

βK
2
 + 

δ - 2β2

3β
C

2

       (17)

The coefficient

                                        Alinear,d Ω  ≡ 2π Ωc0µe-kz

is the amplitude of the damped linearly propagating source mode. Ratios of

the propagating damped modes provide two equations in two unknowns.

                    

Ad z,1Ω
Ad z,2Ω

 =  Ωz
2c0

βKµ
-1

 - 1
8

 Ωz
2c0

βKµ
2

 + 1
64

δ - 2β2

β
µC

2

                           

Ad z,3Ω
Ad z,2Ω

 = 9
8

Ωz
2c0

βKµ
2
 +1

9
δ - 2β2

β
µC

2

                           (18)

These relations imply

                             

δ - 2β2

β
µC

2

 = 9 8
9

Ad z,3Ω
Ad z,2Ω

2

 - Ωz
2c0

βKµ
2

                                         
Ωz
2c0

βKµ
2
 = -B ± B2  + 8

                                 
B ≡ 4 1

4 
 + 

Ad z,1Ω
Ad z,2Ω

2

 - 1
9

Ad z,3Ω
Ad z,2Ω

2

                                 (19)

15
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For the data shown in Figs.(1a) and (1b), B > 0 and the positive square root

must be chosen. With 
Ωz
2c0

βK
2

 and 

δ - 2β2

3β
C

2

 determined from ratios of

measured amplitudes, the exponential decay constant, k, may then be

evaluated using any of the measured amplitudes. In particular,

                                  
k = 1zln 

2π Ωc0µ Ωz
2c0

βKµ

Ad z,2Ω                                            (20)

The implied values K and C,  together with those of 
Ωz
2c0

βK
2

 and 

δ - 2β2

3β
C

2

then easily yield the admissible values β and δ .

The self-consistent parameters sets for the data corresponding to the two

largest source strengths shown in Figs. (1a) and (1b) are

                                k ≈ 1/0.23m.,  β  ≈ 1.1 103 ,  δ ≈ 1.6 109

                                k ≈ 1/0.27m.,  β  ≈ 1.2 103 ,  δ ≈ 6.9 109

(21)

At z = 0.58m, where the data  was taken, the values found for k correspond to

between two and three exponential foldings of the source displacement. The

linear exponential damping coefficient often employed in frequency space

description of wave propagation is k = ω/2Qc0. For the Berea sandstone sample

of  the  Los  Alamos  exper iment ,  Q i s  approximate ly  10 .  Us ing  ω =

(2πN)13.75 kHz (N = 1,2,3,...) yields an exponential damping factor of 1.6N/m.

16
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The values of k given by Eq.(20) are comparable to those used in the frequency

domain when N = 2 or 3 (i.e., 1/0.31m and 1/0.21m).

V.  NUMERICAL EXAMPLES

The results of the previous sections are now illustrated numerically using

specific parametric values. The simple wave solution used here was obtained

using a personal computer.

In the lossless, weakly-nonlinear case, each wavelet (i.e., infinitesimal piece of

the waveform) travels in space-time along characteristics (see Eq. (2)).

Figure 2(a) shows the characteristic paths for one cycle of a 13.75 kHz wave

with displacement amplitude = 5×10-7
m. The typical nonlinear parameters

used in the calculation were β = 103
 and δ = 3×109

. The figure shows that the

wavelets near the peaks and troughs of the waveform both travel slower than

those at the zeros, so the wave distorts. If the first nonlinear term (i.e., the

term containing to β) dominated the nonlinearity, one of these would travel

faster and the other slower; the dominant contribution to the signal speed

would be predominantly linear. The next nonlinear term dominates for the

amplitude used in this example because of the very large value of δ. T h e

contribution made by this term to the signal speed is predominantly cubic in

the strain.

In contrast to the undamped case, Fig. 2(b) shows what happens when a

damping factor k = 4/m = 1/0.25m is applied.  In the illustration, the damping

is implemented numerically by taking a small, lossless distance step and

applying the damping at the end of the step. The new, damped waveform is

used to initiate the next lossless step and the process is repeated. The contrast

between Figs. 2(a) and (b) is clear:  The slope of the paths rapidly become

17
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parallel; all parts of the wave travel with the linear signal speed, about

2.6 km/s in this case. However, the spacing between these "nearly" parallel

paths is  different from those at  z = 0.  Before the damping results in

approximately linear propagation, finite amplitude effects (near z=0) produce

nonlinear divergence and convergence of signal speed paths.

To better illustrate the effect of damping, an overlay of the two sets of

characteristics is shown in Fig. 3.  For this plot, the characteristics shown in

Figs. 2(a) and (b) were rotated so that characteristics corresponding to the zeros

of the waveform (which travel at the small signal speed) are horizontal.  The

solid lines are the lossless characteristics, and the dashed lines are the damped

characteristics. With the damping we've chosen for this example, the

waveform becomes linear (i.e., the characteristics are parallel) at only 0.2m to

0.3m from the source.  The damped characteristics closely follow the

undamped nonlinear paths for z < 0.1m.

Finally, Fig. 4 shows velocity waveforms generated using the same set of

parameters.  Figure 4(a) shows both lossless (solid line) and damped (dashed

line) waveforms after the wave has propagated 0.5 m. The difference in

distortion between the two waveforms is more obvious in Fig. 4(b) where the

damped waveform has been vertically expanded so it has the same amplitude

as the undamped waveform.

VI.  DISCUSSION

An analytical representation, given by Eq. (15) for the frequency spectrum of

nonlinearly propagating pulses in earth materials  was derived. The

representat ion  i s  ne i ther  pulse  length  nor  ampl i tude  l imited.  The

18
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mathematical theory underlying the derivation of the spectral representation

provides a very efficient method for calculating both damped and undamped

nonlinearly propagating waveforms. Illustrations were presented in the

previous section.

The representation was obtained by first deriving the exact representation of

the frequency spectrum for one-dimensional nonlinear pulse propagation,

neglecting dissipation. Although that representation is valid (assuming

undamped propagation) for any driving pulse profile, it was applied in this

paper to a study of spectra of compressional waves generated by finite

amplitude, finite pulse length sources consisting of many cycles of a single

frequency. It was shown that for typical source frequencies and amplitudes of

experiments at Los Alamos, the inclusion of dissipation in theoretical

treatments is essential for even the roughest self-consistent estimates of state

relation parameters from measured spectral data.

The spectral representation for the undamped simple waves was then

modif ied to  inc lude damping ef fec ts ,  and the  "corrected"  spectra l

representation was applied to again analyze spectra from a single frequency

CW pulse source. Values were obtained for the nonlinearity coefficients, β

and δ , of a cubic approximation to the stress-strain relation for a Berea

sandstone bar using data from the experiments. The results are given by Eqs.

(21). They were compared to bounds obtained from numerical perturbation

analyses . The values obtained in this paper for the coefficients of both the

quadratic and cubic terms are in excellent agreement with the bounds

obtained from the numerical perturbation analysis of Van Den Abeele.5
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The βs obtained in this work are more than ten times smaller than those

obtained by Meegan et al,2 The values of δ  far exceed those required by the

perturbation ordering assumption that δ = O β2
. The values found imply the

spectral amplitude of the 1Ω term of the CW single frequency source is very

close to that of the propagating  damped linear source mode (i.e., very little

energy is transferred to other modes). However, for the determination of state

relation parameters, the validity of a small amplitude perturbation analysis

requires both

                                 
1
2

ωz
2c0

βK
v 0,τ

c0
  = 

1 - e-kz

2
ω/k
2c0

β v 0,τ
c0

 << 1

                            

1
3

δ - 2β2

β
C

v 0,τ
c0

 = 1 + e-kz

6
δ - 2β2

β
v 0,τ

c0
 << 1

The first inequality, which restricts |ω| for a given z > 0, guarantees the

quadratic term in the source amplitude expansion of the spectrum is smaller

than the linear one. Given the first inequality, the second then guarantees

that the cubic term is smaller than the quadratic one. For the parameters of

these experiments, the first inequality is satisfied (it is two to three orders of

magnitude smaller than unity), but the cubic term in the expansion of the

spectral representation in the source amplitude is about ten times that of the

quadratic term.

Nevertheless, it is interesting to note that if the calculation of the state

p a r a m e t e r s  h a d  b e e n  p e r f o r m e d  u s i n g  t h e  p e r t u r b a t i o n  m e t h o d ,

approximately the same values of k, β and δ  would have been obtained. This

follows from the fact that for the values found, the square root appearing in
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the expression for the spectral amplitude at 1Ω is approximately equal to

unity. Thus, ignoring contributions to the 1Ω term from nonlinear terms in

the source amplitude expansion gives about the same value of k. Using this

value for the damping coefficient in the 2Ω term yields the same values for β.

Consequently the same values for δ  would be obtained from the expression

f o r  t h e  3Ω spec t ra l  ampl i tude .  This  approx imate  equiva lence  o f

methodologies is an accident attributable to the experimental data. In a system

which transferred more energy from the 1Ω to  the 2Ω spectral amplitude,

calculated values of |β| would be larger and would more strongly affect the

calculation of the decay constant. It should be noted, in view of the relative

sizes  of  cubic  and quadrat ic  terms in the expansion of  the spectral

representation, that it would not be surprising to find that assuming a linear

damping and/or approximating the spectral representation by a low order

polynomial in source amplitude introduces significant errors in the

calculation of state relation parameters.

As a final note, it is clear from the work of others9 that application of a

classical, continuous equation of state to earth materials may not always be

reasonable. For example, hysteresis and end point memory may play a

significant role in propagating waves in rocks. Consequently, discontinuous

equations of state may be needed for accurate modeling. However, the

method presented here may have broad application to non-hysteretic

materials that do not contain discrete memory and the evaluation of

nonideal effects in some earth materials.  The Berea sandstone experimental

results were chosen as a means of illustration only.  Berea sandstone under

ambient conditions almost certainly requires a discontinuous equation of

state in order to more precisely model its behavior.
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FIGURE CAPTIONS

Figure 1: (a) Source spectra as measured with an optical probe for a 13.75 kHz

drive; (b) Spectra after the wave has propagated 0.58 m for a 13.75 kHz drive.

Different curves represent different displacement amplitudes (taken from

Meegan et al., JASA 94, 3389 (1993)).

Figure 2: Characteristics for a single cycle of a 13.75 kHz wave of displacement

amplitude 5×10-7
m travel l ing in a  Berea sandstone bar .  Values of  the

nonlinear parameters β and δ  used in the calculations are 103 a n d  3×109
,

respectively.  Both (a) undamped and (b) damped (k=4/m) characteristics are

shown.

Figure 3: Overlay of undamped and damped characteristics shown in Fig. 2.

Both sets of characteristics have been rotated so that the characteristics

corresponding to the zeros of the waveform (which propagate with the linear

signal speed) are horizontal. Undamped characteristics are the solid lines, and

damped characteristics are the dashed lines.

Figure 4:  (a) Velocity waveforms using the same set of parameters as those of

Figs. 2  and 3.  Lossless (solid lines) and damped (dashed lines) waveforms are

shown after the wave has propagated a distance of 0.5 m.; (b) The damped

waveform has been vertically expanded to make differences between the

distortions of the two waveforms more apparent.
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